C++ Example
#include <iostream>
#include <string>
/**
* Decorator Design Pattern
*
* Intent: Lets you attach new behaviors to objects by placing these objects
* inside special wrapper objects that contain the behaviors.
*/
/**
* The base Component interface defines operations that can be altered by
* decorators.
*/
class Component {
public:
virtual ~Component() {}
virtual std::string Operation() const = 0;
};
/**
* Concrete Components provide default implementations of the operations. There
* might be several variations of these classes.
*/
class ConcreteComponent : public Component {
public:
std::string Operation() const override {
return "ConcreteComponent";
}
};
/**
* The base Decorator class follows the same interface as the other components.
* The primary purpose of this class is to define the wrapping interface for all
* concrete decorators. The default implementation of the wrapping code might
* include a field for storing a wrapped component and the means to initialize
* it.
*/
class Decorator : public Component {
/**
* @var Component
*/
protected:
Component* component_;
public:
Decorator(Component* component) : component_(component) {
}
/**
* The Decorator delegates all work to the wrapped component.
*/
std::string Operation() const override {
return this->component_->Operation();
}
};
/**
* Concrete Decorators call the wrapped object and alter its result in some way.
*/
class ConcreteDecoratorA : public Decorator {
/**
* Decorators may call parent implementation of the operation, instead of
* calling the wrapped object directly. This approach simplifies extension of
* decorator classes.
*/
public:
ConcreteDecoratorA(Component* component) : Decorator(component) {
}
std::string Operation() const override {
return "ConcreteDecoratorA(" + Decorator::Operation() + ")";
}
};
/**
* Decorators can execute their behavior either before or after the call to a
* wrapped object.
*/
class ConcreteDecoratorB : public Decorator {
public:
ConcreteDecoratorB(Component* component) : Decorator(component) {
}
std::string Operation() const override {
return "ConcreteDecoratorB(" + Decorator::Operation() + ")";
}
};
/**
* The client code works with all objects using the Component interface. This
* way it can stay independent of the concrete classes of components it works
* with.
*/
void ClientCode(Component* component) {
// ...
std::cout << "RESULT: " << component->Operation();
// ...
}
int main() {
/**
* This way the client code can support both simple components...
*/
Component* simple = new ConcreteComponent;
std::cout << "Client: I've got a simple component:\n";
ClientCode(simple);
std::cout << "\n\n";
/**
* ...as well as decorated ones.
*
* Note how decorators can wrap not only simple components but the other
* decorators as well.
*/
Component* decorator1 = new ConcreteDecoratorA(simple);
Component* decorator2 = new ConcreteDecoratorB(decorator1);
std::cout << "Client: Now I've got a decorated component:\n";
ClientCode(decorator2);
std::cout << "\n";
delete simple;
delete decorator1;
delete decorator2;
return 0;
}
Client: I've got a simple component:
RESULT: ConcreteComponent
Client: Now I've got a decorated component:
RESULT: ConcreteDecoratorB(ConcreteDecoratorA(ConcreteComponent))