Python
Table of Contents
Hello World
python 2
print "Hello World"
python 3
print("Hello World") # "Hello World\n"
print("Hello", "World", sep="/") # "Hello/World"
print("Hello World", end="") # "Hello World"
Comments
# Single line comment
"""
multi-line comments
"""
Program Entry Point
if __name__ === "__main__":
# do something
Collections
List
import itertools
import functools
list = list[from_inclusive : to_exclusive : ±step_size]
list.append(el) # Or: list += [el]
list.extend(collection) # Or: list += collection
list.sort()
list.reverse()
list = sorted(collection)
iter = reversed(list)
sum_of_elements = sum(collection)
elementwise_sum = [sum(pair) for pair in zip(list_a, list_b)]
sorted_by_second = sorted(collection, key=lambda el: el[1])
sorted_by_both = sorted(collection, key=lambda el: (el[1], el[0]))
# Flatten list
list_example = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
flatter_list = list(itertools.chain.from_iterable(list_example)) # [1, 2, 3, 4, 5, 6, 7, 8, 9]
product_of_elems = functools.reduce(lambda out, el: out * el, collection)
list_of_chars = list(str)
int = list.count(el) # Returns number of occurrences, also works on strings
index = list.index(el) # Returns index of first occurrence or raises ValueError
list.insert(index, el) # Inserts item at index and moves the rest to the right
el = list.pop([index]) # Removes and returns item at index or from the end
list.remove(el) # Removes first occurrence of item or raises ValueError
list.clear() # Removes all items, also works on dictionary and set
Dictionary
view = dict.keys() # Coll. of keys that reflects changes
view = dict.values() # Coll. of values that reflects changes
view = dict.items() # Coll. of key-value tuples that reflects chgs
value = dict.get(key, default=None) # Returns default if key is missing
value = dict.setdefault(key, default=None) # Returns and writes default if key is missing
dict = collections.defaultdict(type) # Creates a dict with default value of type
dict = collections.defaultdict(lambda: 1) # Creates a dict with default value 1
dict = dict(collection) # Creates a dict from coll. of key-value pairs
dict = dict(zip(keys, values)) # Creates a dict from two collections
dict = dict.fromkeys(keys [, value]) # Creates a dict from collection of keys
dict.update(dict) # Adds items. Replaces ones with matching keys
value = dict.pop(key) # Removes item or raises KeyError
{k for k, v in dict.items() if v == value} # Returns set of keys that point to the value
{k: v for k, v in dict.items() if k in keys} # Returns a dictionary, filtered by keys
- Counter
from collections import Counter
colors = ['blue', 'blue', 'blue', 'red', 'red']
counter = Counter(colors)
counter['yellow'] += 1 # Counter({'blue': 3, 'red': 2, 'yellow': 1})
counter.most_common()[0] # ('blue', 3)
Set
set = set()
set.add(el) # Or: set |= {el}
set.update(collection) # Or: set |= set
set = set.union(coll.) # Or: set | set
set = set.intersection(coll.) # Or: set & set
set = set.difference(coll.) # Or: set - set
set = set.symmetric_difference(coll.) # Or: set ^ set
bool = set.issubset(coll.) # Or: set = set
bool = set.issuperset(coll.) # Or: set = set
el = set.pop() # Raises KeyError if empty
set.remove(el) # Raises KeyError if missing
set.discard(el) # Doesn't raise an error
- Frozen Set
- Is immutable and hashable
- That means it can be used as a key in a dictionary or as an element in a set
frozenset = frozenset(collection)
Tuple
- Tuple is an immutable and hashable list
tuple = ()
tuple = (el, )
tuple = (el_1, el_2 [, ...])
- Named Tuple
- Tuple's subclass with named elements
from collections import namedtuple
Point = namedtuple('Point', 'x y')
p = Point(1, y=2) # Point(x=1, y=2)
p[0] # 1
p.x # 1
getattr(p, 'y') # 2
p._fields # ('x', 'y')
Point._fields # ('x', 'y')
Range
range = range(to_exclusive)
range = range(from_inclusive, to_exclusive)
range = range(from_inclusive, to_exclusive, ±step_size)
from_inclusive = range.start
to_exclusive = range.stop
Enumerate
for i, el in enumerate(collection [, i_start]):
...
Iterator
iter = iter(collection) # `iter(iter)` returns unmodified iterator
iter = iter(function, to_exclusive) # A sequence of return values until 'to_exclusive'
el = next(iter [, default]) # Raises StopIteration or returns 'default' on end
list = list(iter) # Returns a list of iterator's remaining elements
- Itertools
from itertools import count, repeat, cycle, chain, islice
iter = count(start=0, step=1) # Returns updated value endlessly. Accepts floats
iter = repeat(el [, times]) # Returns element endlessly or 'times' times
iter = cycle(collection) # Repeats the sequence endlessly
iter = chain(coll_1, coll_2 [, ...]) # Empties collections in order
iter = chain.from_iterable(collection) # Empties collections inside a collection in order
iter = islice(collection, to_exclusive)
iter = islice(collection, from_inclusive, to_exclusive [, +step_size])
Generator
- Any function that contains a yield statement returns a generator
- Generators and iterators are interchangeable
def count(start, step):
while True:
yield start
start += step
counter = count(10, 2)
next(counter), next(counter), next(counter) # (10, 12, 14)
Types
Type
- Everything is an object
- Every object has a type
- Type and class are synonymous
type = type(el) # Or: el.__class__
bool = isinstance(el, type) # Or: issubclass(type(el), type)
type('a'), 'a'.__class__, str # (class 'str', class 'str', class 'str')
- Some types do not have built-in names, so they must be imported
from types import FunctionType, MethodType, LambdaType, GeneratorType
- Abstract Base Classes
- Each abstract base class specifies a set of virtual subclasses
- These classes are then recognized by isinstance() and issubclass() as subclasses of the ABC, although they are really not
from collections.abc import Sequence, Collection, Iterable
isinstance([1, 2, 3], Iterable) # True
Sequence | Collection | Iterable | |
---|---|---|---|
list, range, str | ☑ | ☑ | ☑ |
dict, set | ☑ | ☑ | |
iter | ☑ |
from numbers import Integral, Rational, Real, Complex, Number
isinstance(123, Number) # True
Integral | Rational | Real | Complex | Number | |
---|---|---|---|---|---|
int | ☑ | ☑ | ☑ | ☑ | ☑ |
fractions.Fraction | ☑ | ☑ | ☑ | ☑ | |
float | ☑ | ☑ | ☑ | ||
complex | ☑ | ☑ | |||
decimal.Decimal | ☑ |
String
str1 = "test string"
str1.capitalize() # "Test string"
str1.upper() # "TEST STRING"
str1.lower() # "test string"
str1.title() # "Test String"
str = str.strip() # Strips all whitespace characters from both ends
str = str.strip('chars') # Strips all passed characters from both ends
str = str.lstrip() # Strips all whitespace characters from left end
str = str.rstrip() # Strips all whitespace characters from right end
list = str.split() # Splits on one or more whitespace characters
list = str.split(sep=None, maxsplit=-1) # Splits on 'sep' str at most 'maxsplit' times.
list = str.splitlines(keepends=False) # Splits on \n,\r,\r\n. Keeps them if 'keepends'
str = str.join(coll_of_strings) # Joins elements using string as separator
bool = sub_str in str # Checks if string contains a substring
bool = str.startswith(sub_str) # Pass tuple of strings for multiple options
bool = str.endswith(sub_str) # Pass tuple of strings for multiple options
int = str.find(sub_str) # Returns start index of first match or -1
int = str.index(sub_str) # Same but raises ValueError if missing
str = str.replace(old, new [, count]) # Replaces 'old' with 'new' at most 'count' times
txt = "Hello Sam!"
mytable = txt.maketrans("S", "P") # Create a mapping table
# use mapping table in the translate() method to replace any "S" characters with a "P" character
txt.translate(mytable) # "Hello Pam!"
str = chr(int) # Converts int to Unicode char
int = ord(str) # Converts Unicode char to int
- Property Methods
!#$%... | a-zA-Z | 1/4 1/2 3/4 | sup2/supsup3/supsup1/sup | 0-9 | |
---|---|---|---|---|---|
isprintable() | ☑ | ☑ | ☑ | ☑ | ☑ |
isalnum() | ☑ | ☑ | ☑ | ☑ | |
isnumeric() | ☑ | ☑ | ☑ | ||
isdigit() | ☑ | ☑ | |||
isdecimal() | ☑ |
str1 = ""
str1.isspace() # False
str2 = " t "
str2.isspace() # False
str3 = " "
str3.isspace() # True
# checks for \t\n\r\f\v...
str4 = " \n"
str4.isspace() # True
Regular Expression
- Argument
flags=re.IGNORECASE
can be used with all functions - Argument
flags=re.MULTILINE
makes^
and$
match the start/end of each line - Argument
flags=re.DOTALL
makes dot also accept the\n
- Use r
\1
or\\1
for backreference - Add
?
after an operator to make it non-greedy
import re
str = re.sub(regex, new, text, count=0) # Substitutes all occurrences with 'new'
list = re.findall(regex, text) # Returns all occurrences as strings
list = re.split(regex, text, maxsplit=0) # Use brackets in regex to include the matches
# Search() and match() return None if they can't find a match
Match = re.search(regex, text) # Searches for first occurrence of the pattern
Match = re.match(regex, text) # Searches only at the beginning of the text
iter = re.finditer(regex, text) # Returns all occurrences as match objects
- Match Object
str = Match.group() # Returns the whole match, also group(0)
str = Match.group(1) # Returns part in the first bracket
tuple = Match.groups() # Returns all bracketed parts
int = Match.start() # Returns start index of the match
int = Match.end() # Returns exclusive end index of the match
- Special Sequences
- By default digits, alphanumerics and whitespaces from all alphabets are matched, unless
flags=re.ASCII
argument is used - Use a capital letter for negation
- By default digits, alphanumerics and whitespaces from all alphabets are matched, unless
'\d' == '[0-9]' # Matches any digit
'\w' == '[a-zA-Z0-9_]' # Matches any alphanumeric
'\s' == '[\t\n\r\f\v]' # Matches any whitespace
Format
str = f'{el_1}, {el_2}'
str = '{}, {}'.format(el_1, el_2)
- Attributes
from collections import namedtuple
Person = namedtuple('Person', 'name height')
person = Person('Jean-Luc', 187)
f'{person.height}' # '187'
'{p.height}'.format(p=person) # '187'
- General Options
str = "test
f"{str:10}" # 'test '
f"{str:^10}" # ' test '
f"{str:10}" # ' test'
f"{str:.10}" # 'test......'
f"{str:0}" # 'test'
- Strings
!r
calls object's repr() method, instead of str(), to get a string
f"{'abcde'!r:10}" # "'abcde' "
f"{'abcde':10.3}" # 'abc '
f"{'abcde':.3}" # 'abc'
- Numbers
f"{123456:10,}" # ' 123,456'
f"{123456:10_}" # ' 123_456'
f"{123456:+10}" # ' +123456'
f"{-123456:=10}" # '- 123456'
f"{123456:}" # '123456'
f"{-123456:}" # '-123456'
- Floats
f"{1.23456:10.3}" # ' 1.23'
f"{1.23456:10.3f}" # ' 1.235'
f"{1.23456:10.3e}" # ' 1.235e+00'
f"{1.23456:10.3%}" # ' 123.456%'
f"{float}" | f"{float:f}" | f"{float:e}" | f"{float:%}" | |
---|---|---|---|---|
0.000056789 | '5.6789e-05' | '0.000057' | '5.678900e-05' | '0.005679%' |
0.00056789 | '0.00056789' | '0.000568' | '5.678900e-04' | '0.056789%' |
0.0056789 | '0.0056789' | '0.005679' | '5.678900e-03' | '0.567890%' |
0.056789 | '0.056789' | '0.056789' | '5.678900e-02' | '5.678900%' |
0.56789 | '0.56789' | '0.567890' | '5.678900e-01' | '56.789000%' |
5.6789 | '5.6789' | '5.678900' | '5.678900e+00' | '567.890000%' |
56.789 | '56.789' | '56.789000' | '5.678900e+01' | '5678.900000%' |
567.89 | '567.89' | '567.890000' | '5.678900e+02' | '56789.000000%' |
f"{float:.2}" | f"{float:.2f}" | f"{float:.2e}" | f"{float:.2%" | |
---|---|---|---|---|
0.000056789 | '5.7e-05' | '0.00' | '5.68e-05' | '0.01%' |
0.00056789 | '0.00057' | '0.00' | '5.68e-04' | '0.06%' |
0.0056789 | '0.0057' | '0.01' | '5.68e-03' | '0.57%' |
0.056789 | '0.057' | '0.06' | '5.68e-02' | '5.68%' |
0.56789 | '0.57' | '0.57' | '5.68e-01' | '56.79%' |
5.6789 | '5.7' | '5.68' | '5.68e+00' | '567.89%' |
56.789 | '5.7e+01' | '56.79' | '5.68e+01' | '5678.90%' |
567.89 | '5.7e+02' | '567.89' | '5.68e+02' | '56789.00%' |
- Ints
f"{90:c}" # 'Z'
f"{90:b}" # '1011010'
f"{90:X}" # '5A'
Numbers
- Types
int(str)
andfloat(str)
raise ValueError on malformed strings- Decimal numbers can be represented exactly, unlike foats where
1.1 + 2.2 != 3.3
- Precision of decimal operations is set with:
decimal.getcontext().prec = int
int = int(float/str/bool) # Or: math.floor(float)
float = float(int/str/bool) # Or: reale±int
complex = complex(real=0, imag=0) # Or: real ± realj
Fraction = fractions.Fraction(0, 1) # Or: Fraction(numerator=0, denominator=1)
Decimal = decimal.Decimal(str/int) # Or: Decimal((sign, digits, exponent))
- Basic Functions
num = pow(num, num) # Or: num ** num
num = abs(num) # float = abs(complex)
num = round(num [, ±ndigits]) # `round(126, -1) == 130`
- Math
from math import e, pi, inf, nan, isinf, isnan
from math import cos, acos, sin, asin, tan, atan, degrees, radians
from math import log, log10, log2
- Statistics
from statistics import mean, median, variance, stdev, pvariance, pstdev
- Random
from random import random, randint, choice, shuffle
float = random()
int = randint(from_inclusive, to_inclusive)
el = choice(list)
shuffle(list)
- Bin, Hex
int = ±0bbin # Or: ±0xhex
int = int('±bin', 2) # Or: int('±hex', 16)
int = int('±0bbin', 0) # Or: int('±0xhex', 0)
'[-]0bbin' = bin(int) # Or: hex(int)
- Bitwise Operators
int = int & int # And
int = int | int # Or
int = int ^ int # Xor (0 if both bits equal)
int = int n_bits # Shift left ( for right)
int = ~int # Not (also: -int - 1)
Combinatorics
- Every function returns an iterator
- If you want to print the iterator, you need to pass it to the list() function first!
from itertools import product, combinations, combinations_with_replacement, permutations
product([0, 1], repeat=3) # itertools.product object at 0x10b08ffc0
list(product([0, 1], repeat=3)) # [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)]
list(product('ab', '12')) # [('a', '1'), ('a', '2'), ('b', '1'), ('b', '2')]
list(combinations('abc', 2)) # [('a', 'b'), ('a', 'c'), ('b', 'c')]
list(combinations_with_replacement('abc', 2)) # [('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'b'), ('b', 'c'), ('c', 'c')]
list(permutations('abc', 2)) # [('a', 'b'), ('a', 'c'), ('b', 'a'), ('b', 'c'), ('c', 'a'), ('c', 'b')]
Datetime
- Module 'datetime' provides 'date', 'time', 'datetime' and 'timedelta' classes
- All are immutable and hashable
- Time and datetime objects can be 'aware' (have defined timezone), or 'naive' (don't have defined timezone)
- If object is naive, it is presumed to be in the system's timezone
python 2
from datetime import date, time, datetime, timedelta
from dateutil.tz import UTC, tzlocal, gettz, resolve_imaginary # included in python 2
python 3
pip install python-dateutil
from datetime import date, time, datetime, timedelta
from dateutil.tz import UTC, tzlocal, gettz, resolve_imaginary # needs to install 3rd party library
- Constructors
- Use
date/datetime.weekday()
to get the day of the week (Mon == 0) - 'fold=1' means the second pass in case of time jumping back for one hour
datetime aware = resolve_imaginary(datetime aware)
fixes datetimes that fall into the missing hour
- Use
date = date(year, month, day)
time = time(hour=0, minute=0, second=0, microsecond=0, tzinfo=None, fold=0)
datetime = datetime(year, month, day, hour=0, minute=0, second=0, ...)
timedelta = timedelta(days=0, seconds=0, microseconds=0, milliseconds=0,
minutes=0, hours=0, weeks=0)
- Now
- To extract time use
datetime naive.time()
,datetime aware.time()
ordatetime aware.timetz()
- To extract time use
date/datetime naive = date/datetime.today() # Current local date or naive datetime
datetime naive = datetime.utcnow() # Naive datetime from current UTC time
datetime aware = datetime.now(tzinfo) # Aware datetime from current tz time
- Timezone
tzinfo = UTC # UTC timezone. London without DST
tzinfo = tzlocal() # Local timezone, also gettz()
tzinfo = gettz('Continent/City') # 'Continent/City_Name' timezone or None
datetime aware = datetime.astimezone(tzinfo) # Datetime, converted to passed timezone
time aware/datetime aware = time/datetime.replace(tzinfo=tzinfo) # Unconverted object with new timezone
- Encode
- ISO strings come in following forms:
'YYYY-MM-DD', 'HH:MM:SS.ffffff[±offset]'
, or both separated by an arbitrary character- Offset is formatted as:
HH:MM
- Offset is formatted as:
- Epoch on Unix systems is:
'1970-01-01 00:00 UTC', '1970-01-01 01:00 CET', ...
- ISO strings come in following forms:
date/time/datetime = date/time/datetime.fromisoformat('iso') # Object from ISO string. Raises ValueError
datetime = datetime.strptime(str, 'format') # Datetime from str, according to format
date/datetime naive = date/datetime.fromordinal(int) # date/datetime naive from days since Christ, at midnight
datetime naive = datetime.fromtimestamp(real) # Local time datetime naive from seconds since Epoch
datetime aware = datetime.fromtimestamp(real, tz.) # Aware datetime from seconds since Epoch
- Decode
str = date/time/datetime.isoformat(sep='T') # Also timespec='auto/hours/minutes/seconds'
str = date/time/datetime.strftime('format') # Custom string representation
int = date/datetime.toordinal() # Days since Christ, ignoring time and tz
float = datetime naive.timestamp() # Seconds since Epoch, from datetime naive in local tz
float = datetime aware.timestamp() # Seconds since Epoch, from datetime aware
- Format
- When parsing,
%z
also accepts±HH:MM
- For abbreviated weekday and month use
%a
and%b
- When parsing,
from datetime import datetime
dt = datetime.strptime('2015-05-14 23:39:00.00 +0200', '%Y-%m-%d %H:%M:%S.%f %z')
dt.strftime("%A, %dth of %B '%y, %I:%M%p %Z") # "Thursday, 14th of May '15, 11:39PM UTC+02:00"
- Arithmetics
date/datetime = date/datetime ± timedelta # Returned datetime can fall into missing hour
timedelta = date/datetime naive - date/datetime naive # Returns the difference, ignoring time jumps
timedelta = datetime aware - datetime aware # Ignores time jumps if they share tzinfo object
timedelta = datetime_UTC - datetime_UTC # Convert datetimes to UTC to get the actual delta
Syntax
Arguments
- Inside Function Call
function(positional_args) # f(0, 0)
function(keyword_args) # f(x=0, y=0)
function(positional_args, keyword_args) # f(0, y=0)
- Inside Function Definition
def f(nondefault_args): # def f(x, y):
...
def f(default_args): # def f(x=0, y=0):
...
def f(nondefault_args, default_args): # def f(x, y=0):
...
Splat Operator
- Inside Function Call
- Splat expands a collection into positional arguments, while splatty-splat expands a dictionary into keyword arguments
# method 1
args = (1, 2)
kwargs = {'x': 3, 'y': 4, 'z': 5}
functionName(*args, **kwargs)
# method 2
functionName(1, 2, x=3, y=4, z=5)
- Inside Function Definition
- Splat combines zero or more positional arguments into a tuple, while splatty-splat combines zero or more keyword arguments into a dictionary
def add(*a):
return sum(a)
add(1, 2, 3) # 6
- Legal argument combinations
def f(x, y, z): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(*, x, y, z): # f(x=1, y=2, z=3)
def f(x, *, y, z): # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(x, y, *, z): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3)
def f(*args): # f(1, 2, 3)
def f(x, *args): # f(1, 2, 3)
def f(*args, z): # f(1, 2, z=3)
def f(x, *args, z): # f(1, 2, z=3)
def f(**kwargs): # f(x=1, y=2, z=3)
def f(x, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(*, x, **kwargs): # f(x=1, y=2, z=3)
def f(*args, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(x, *args, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3) | f(1, 2, 3)
def f(*args, y, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3)
def f(x, *args, z, **kwargs): # f(x=1, y=2, z=3) | f(1, y=2, z=3) | f(1, 2, z=3)
- Other Uses
list = [*collection [, ...]]
set = {*collection [, ...]}
tuple = (*collection, [...])
dict = {**dict [, ...]}
head, *body, tail = collection
Inline
- Lambda
function = lambda: return_value
function = lambda argument_1, argument_2: return_value
- Comprehensions
list = [i+1 for i in range(10)] # [1, 2, ..., 10]
set = {i for i in range(10) if i 5} # {6, 7, 8, 9}
iter = (i+5 for i in range(10)) # (5, 6, ..., 14)
dict = {i: i*2 for i in range(10)} # {0: 0, 1: 2, ..., 9: 18}
# method 1
out = [i+j for i in range(10) for j in range(10)]
# method 2
out = []
for i in range(10):
for j in range(10):
out.append(i+j)
- Map, Filter, Reduce
from functools import reduce
iter = map(lambda x: x + 1, range(10)) # [1, 2, ..., 10]
iter = filter(lambda x: x 5, range(10)) # {6, 7, 8, 9}
obj = reduce(lambda out, x: out + x, range(10)) # 45
- Any, All
bool = any(collection) # False if empty
bool = all(el[1] for el in collection) # True if empty
- If - Else
obj = expression_if_true if condition else expression_if_false
[a if a else 'zero' for a in (0, 1, 2, 3)] # ['zero', 1, 2, 3]
- Namedtuple, Enum, Dataclass
from collections import namedtuple
from enum import Enum
from dataclasses import make_dataclass
Point = namedtuple('Point', 'x y')
point = Point(0, 0)
Direction = Enum('Direction', 'n e s w')
direction = Direction.n
Creature = make_dataclass('Creature', ['location', 'direction'])
creature = Creature(Point(0, 0), Direction.n)
Closure
- have a closure in Python when:
- A nested function references a value of its enclosing function
- and the enclosing function returns the nested function
- If multiple nested functions within enclosing function reference the same value, that value gets shared
- To dynamically access function's first free variable use
function.__closure__[0].cell_contents
def get_multiplier(a):
def out(b):
return a * b
return out
multiply_by_3 = get_multiplier(3)
multiply_by_3(10) # 30
- Partial
- Partial is also useful in cases when function needs to be passed as an argument
- because it enables us to set its arguments beforehand
- e.g.:
defaultdict(function)
,iter(function, to_exclusive)
and dataclass'sfield(default_factory=function)
- Partial is also useful in cases when function needs to be passed as an argument
from functools import partial
import operator as op
function = partial(function [, arg_1, arg_2, ...])
multiply_by_3 = partial(op.mul, 3)
multiply_by_3(10) # 30
- Non-Local
- If variable is being assigned to anywhere in the scope, it is regarded as a local variable
- unless it is declared as a
global
or anonlocal
def get_counter(): i= 0
def out():
nonlocal i
i += 1
return i
return out
counter = get_counter()
counter(), counter(), counter() # (1, 2, 3)
Decorator
- A decorator takes a function, adds some functionality and returns it
@decorator_name
def function_that_gets_passed_to_decorator():
...
- Debugger Example
- Wraps is a helper decorator that copies the metadata of the passed function (func) to the function it is wrapping (out)
- Without it
add.__name__
would return 'out'
from functools import wraps
def debug(func):
@wraps(func)
def out(*args, **kwargs):
print(func.__name__)
return func(*args, **kwargs)
return out
@debug
def add(x, y):
return x + y
- LRU Cache
- Decorator that caches function's return values
- All function's arguments must be hashable
- CPython interpreter limits recursion depth to 1000 by default
- To increase it use
sys.setrecursionlimit(depth)
- To increase it use
from functools import lru_cache
@lru_cache(maxsize=None)
def fib(n):
return n if n 2 else fib(n-2) + fib(n-1)
- Parametrized Decorator
- A decorator that accepts arguments and returns a normal decorator that accepts a function
from functools import wraps
def debug(print_result=False):
def decorator(func):
@wraps(func)
def out(*args, **kwargs):
result = func(*args, **kwargs)
print(func.__name__, result if print_result else '')
return result
return out
return decorator
@debug(print_result=True)
def add(x, y):
return x + y
Class
Return value of repr() should be unambiguous and of str() readable
If only repr() is defined, it will also be used for str()
class Test:
def __init__(self, a):
self.a = a
def __repr__(self):
class_name = self.__class__.__name__
return f'{class_name}({self.a!r})'
def __str__(self):
return str(self.a)
@classmethod
def get_class_name(cls):
return cls.__name__Str()
use casestest = Test("sample")
print(test) # sample
print(f"{test}") # sample
raise Exception(test)
"""
Traceback (most recent call last):
File "/path/to/file.py", line 27, in module
raise Exception(test)
Exception: sample
shell returned 1
"""
import loguru # pip install loguru
loguru.logger.debug(test) # 2022-04-04 02:43:02.509 | DEBUG | __main__:module:28 - sample
import csv
# open the file in the write mode
file = open('path/to/csv_file', 'w')
csv.writer(file).writerow([test])
```
Repr()
use casestest = Test("sample")
print([test]) # [Test('sample')]
print(f'{test!r}') # Test('sample')
import loguru # pip install loguru
loguru.logger.exception(test)
"""
2022-04-04 02:51:52.414 | ERROR | __main__:module:25 - sample
NoneType: None
"""
import dataclasses
Z = dataclasses.make_dataclass('Z', ['a'])
print(Z(test)) # Z(a=Test('sample'))
```
Constructor Overloading
class name:
def __init__(self, a=None):
self.a = aInheritance
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
class Employee(Person):
def __init__(self, name, age, staff_num):
super().__init__(name, age)
self.staff_num = staff_num
```
Multiple Inheritance
class A: pass
class B: pass
class C(A, B): pass
# MRO determines the order in which parent classes are traversed when searching for a method
C.mro() # [class 'C', class 'A', class 'B', class 'object']Property
- Pythonic way of implementing getters and setters
class MyClass:
@property
def a(self):
return self._a
@a.setter
def a(self, value):
self._a = value
el = MyClass() el.a = 123 el.a # 123
- Dataclass
- Decorator that automatically generates init(), repr() and eq() special methods
- Objects can be made sortable with 'order=True' and/or immutable and hashable with 'frozen=True'
- Function field() is needed because `attr_name: list = []` would make a list that is shared among all instances
- Default_factory can be any callable
```python
from dataclasses import dataclass, field
@dataclass(order=False, frozen=False)
class class_name:
attr_name_1: type
attr_name_2: type = default_value
attr_name_3: list/dict/set = field(default_factory=list/dict/set)
Inline
from dataclasses import make_dataclass
class = make_dataclass('class_name', coll_of_attribute_names)
class = make_dataclass('class_name', coll_of_tuples)
tuple = ('attr_name', type [, default_value])
```
Slots
Mechanism that restricts objects to attributes listed in 'slots' and significantly reduces their memory footprint
class MyClassWithSlots:
__slots__ = ['a']
def __init__(self):
self.a = 1
Copy
from copy import copy, deepcopy
object = copy(object) object = deepcopy(object)
[back to top](#table-of-contents)
### Duck Type
- A duck type is an implicit type that prescribes a set of special methods
- Any object that has those methods defined is considered a member of that duck type
- Comparable
- If `eq()` method is not overridden, it returns `id(self) == id(other)`, which is the same as 'self is other'
- That means all objects compare not equal by default
- Only the left side object has eq() method called, unless it returns NotImplemented, in which case the right object is consulted
```python
class MyComparable:
def __init__(self, a):
self.a = a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented
Hashable
Hashable object needs both hash() and eq() methods and its hash value should never change
Hashable objects that compare equal must have the same hash value, meaning default
hash()
that returnsid(self)
will not doThat is why Python automatically makes classes unhashable if you only implement
eq()
class MyHashable:
def __init__(self, a):
self._a = a
@property
def a(self):
return self._a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented
def __hash__(self):
return hash(self.a)
Sortable
- With total_ordering decorator, you only need to provide eq() and one of lt(), gt(), le() or ge() special methods
from functools import total_ordering
@total_ordering
class MySortable:
def __init__(self, a):
self.a = a
def __eq__(self, other):
if isinstance(other, type(self)):
return self.a == other.a
return NotImplemented
def __lt__(self, other):
if isinstance(other, type(self)):
return self.a other.a
return NotImplementedIterator
- Any object that has methods next() and iter() is an iterator
- Next() should return next item or raise StopIteration
- Iter() should return 'self'
- Python has many different iterator objects
- Iterators returned by the iter() function, such as list_iterator and set_iterator
- Objects returned by the itertools module, such as count, repeat and cycle
- Generators returned by the generator functions and generator expressions
- File objects returned by the open() function, etc
class Counter:
def __init__(self):
self.i = 0
def __next__(self):
self.i += 1
return self.i
def __iter__(self):
return self
counter = Counter() next(counter), next(counter), next(counter) # (1, 2, 3)
- Callable
- All functions and classes have a call() method, hence are callable
- When this cheatsheet uses `function` as an argument, it actually means `callable`
```python
class Counter:
def __init__(self):
self.i = 0
def __call__(self):
self.i += 1
return self.i
counter = Counter()
counter(), counter(), counter() # (1, 2, 3)
Context Manager
- Enter() should lock the resources and optionally return an object
- Exit() should release the resources
- Any exception that happens inside the with block is passed to the exit() method
- If it wishes to suppress the exception it must return a true value
class MyOpen:
def __init__(self, filename):
self.filename = filename
def __enter__(self):
self.file = open(self.filename)
return self.file
def __exit__(self, exc_type, exception, traceback):
self.file.close()
with open('test.txt', 'w') as file: file.write('Hello World!')
with MyOpen('test.txt') as file: print(file.read())
Hello World!
- Iterable
- Only required method is iter()
- It should return an iterator of object's items
- Contains() automatically works on any object that has iter() defined
```python
class MyIterable:
def __init__(self, a):
self.a = a
def __iter__(self):
return iter(self.a)
def __contains__(self, el):
return el in self.a
obj = MyIterable([1, 2, 3])
[el for el in obj] # [1, 2, 3]
1 in obj # True
Collection
- Only required methods are iter() and len()
class MyCollection:
def __init__(self, a):
self.a = a
def __iter__(self):
return iter(self.a)
def __contains__(self, el):
return el in self.a
def __len__(self):
return len(self.a)Sequence
- Only required methods are len() and getitem()
- Getitem() should return an item at index or raise IndexError
- Iter() and contains() automatically work on any object that has getitem() defined
- Reversed() automatically works on any object that has getitem() and len() defined
class MySequence:
def __init__(self, a):
self.a = a
def __iter__(self):
return iter(self.a)
def __contains__(self, el):
return el in self.a
def __len__(self):
return len(self.a)
def __getitem__(self, i):
return self.a[i]
def __reversed__(self):
return reversed(self.a)ABC Sequence
- It's a richer interface than the basic sequence
- Extending it generates iter(), contains(), reversed(), index() and count()
- Unlike 'abc.Iterable' and 'abc.Collection', it is not a duck type
- That is why 'issubclass(MySequence, abc.Sequence)' would return False even if MySequence had all the methods defined
from collections import abc
class MyAbcSequence(abc.Sequence): def init(self, a): self.a = a
def __len__(self):
return len(self.a)
def __getitem__(self, i):
return self.a[i]
- available special methods
- iter(), contains(), len(), getitem(), reversed(), index(), count()
- Other ABCs that generate missing methods are: MutableSequence, Set, MutableSet, Mapping and MutableMapping
- Names of their required methods are stored in `abc.__abstractmethods__`
[back to top](#table-of-contents)
### Enum
- If there are no numeric values before auto(), it returns 1
- Otherwise it returns an increment of the last numeric value
```python
from enum import Enum, auto
class enum_name(Enum):
member_name_1 = value_1
member_name_2 = value_2_a, value_2_b
member_name_3 = auto()
member = enum.member_name # Returns a member
member = enum['member_name'] # Returns a member or raises KeyError
member = enum(value) # Returns a member or raises ValueError
str = member.name # Returns member's name
obj = member.value # Returns member's value
list_of_members = list(enum)
member_names = [a.name for a in enum]
member_values = [a.value for a in enum]
random_member = random.choice(list(enum))
def get_next_member(member):
members = list(member.__class__)
index = (members.index(member) + 1) % len(members)
return members[index]
Inline
Cutlery = Enum('Cutlery', 'fork knife spoon')
Cutlery = Enum('Cutlery', ['fork', 'knife', 'spoon'])
Cutlery = Enum('Cutlery', {'fork': 1, 'knife': 2, 'spoon': 3})User-defined functions cannot be values, so they must be wrapped
- Another solution in this particular case is to use built-in functions and() and or() from the module operator
from functools import partial
LogicOp = Enum('LogicOp', {'AND': partial(lambda l, r: l and r),
'OR' : partial(lambda l, r: l or r)})
```
Exception
Basic Example
try:
code
except exception:
codeComplex Example
- Code inside the 'else' block will only be executed if 'try' block had no exception
- Code inside the 'finally' block will always be executed.
try:
code_1
except exception_a:
code_2_a
except exception_b:
code_2_b
else:
code_2_c
finally:
code_3Catching Exceptions
- Also catches subclasses of the exception
- Use
traceback.print_exc()
to print the error message to stderr
except exception:
except exception as name:
except (exception, ...):
except (exception, ...) as name:Raising Exceptions
raise exception
raise exception()
raise exception(el [, ...])- Re-raising caught exception
except exception as name:
...
raise
- Re-raising caught exception
Exception Object
arguments = name.args
exc_type = name.__class__
filename = name.__traceback__.tb_frame.f_code.co_filename
func_name = name.__traceback__.tb_frame.f_code.co_name
line = linecache.getline(filename, name.__traceback__.tb_lineno)
error_msg = traceback.format_exception(exc_type, name, name.__traceback__)Built-in Exceptions
BaseException
├── SystemExit # Raised by the sys.exit() function
├── KeyboardInterrupt # Raised when the user hits the interrupt key (ctrl-c)
└── Exception # User-defined exceptions should be derived from this class
├── ArithmeticError # Base class for arithmetic errors
│ └── ZeroDivisionError # Raised when dividing by zero
├── AttributeError # Raised when an attribute is missing
├── EOFError # Raised by input() when it hits end-of-file condition
├── LookupError # Raised when a look-up on a collection fails
│ ├── IndexError # Raised when a sequence index is out of range
│ └── KeyError # Raised when a dictionary key or set element is not found
├── NameError # Raised when a variable name is not found
├── OSError # Failures such as “file not found” or “disk full”
│ └── FileNotFoundError # When a file or directory is requested but doesn't exist
├── RuntimeError # Raised by errors that don't fall in other categories
│ └── RecursionError # Raised when the maximum recursion depth is exceeded
├── StopIteration # Raised by next() when run on an empty iterator
├── TypeError # Raised when an argument is of wrong type
└── ValueError # When an argument is of right type but inappropriate value
└── UnicodeError # Raised when encoding/decoding strings to/from bytes failsCollections and their exceptions
list dict set getitem() IndexError KeyError pop() IndexError KeyError KeyError remove() ValueError KeyError index() ValueError Useful built-in exceptions:
raise TypeError('Argument is of wrong type!')
raise ValueError('Argument is of right type but inappropriate value!')
raise RuntimeError('None of above!')User-defined Exceptions
class MyError(Exception):
pass
class MyInputError(MyError): pass
[back to top](#table-of-contents)
## System
### Exit
- Exits the interpreter by raising SystemExit exception
```python
import sys
sys.exit() # Exits with exit code 0 (success)
sys.exit(el) # Prints to stderr and exits with 1
sys.exit(int) # Exits with passed exit code
Print
Use
file=sys.stderr
for messages about errorsUse `flush=True“ to forcibly flush the stream
print(el_1, ..., sep=' ', end='\n', file=sys.stdout, flush=False)
Pretty Print
Levels deeper than 'depth' get replaced by '...'.
from pprint import pprint
pprint(collection, width=80, depth=None, compact=False, sort_dicts=True)
```
Input
- Reads a line from user input or pipe if present
- Trailing newline gets stripped
- Prompt string is printed to the standard output before reading input
- Raises EOFError when user hits
EOF (ctrl-d/z)
or input stream gets exhausted
str = input(prompt=None)
Command Line Arguments
import sys
script_name = sys.argv[0]
arguments = sys.argv[1:]
Argument Parser
Use
help=str
to set argument descriptionUse
default=el
to set the default valueUse
type=FileType(mode)
for filesfrom argparse import ArgumentParser, FileType
p = ArgumentParser(description=str)
p.add_argument('-short_name', '--name', action='store_true') # Flag
p.add_argument('-short_name', '--name', type=type) # Option
p.add_argument('name', type=type, nargs=1) # First argument
p.add_argument('name', type=type, nargs='+') # Remaining arguments
p.add_argument('name', type=type, nargs='*') # Optional arguments
args = p.parse_args() # Exits on error
value = args.name
```
Open
Opens the file and returns a corresponding file object
encoding=None
means that the default encoding is used, which is platform dependent- Best practice is to use
encoding="utf-8"
whenever possible
- Best practice is to use
newline=None
means all different end of line combinations are converted to '\n' on read- while on write all
\n
characters are converted to system's default line separator
- while on write all
newline=""
means no conversions take place- but input is still broken into chunks by readline() and readlines() on either
\n
,\r
or\r\n
- but input is still broken into chunks by readline() and readlines() on either
file = open('path', mode='r', encoding=None, newline=None)
Modes
r
- Read (default)w
- Write (truncate)x
- Write or fail if the file already existsa
- Appendw+
- Read and write (truncate)r+
- Read and write from the starta+
- Read and write from the endt
- Text mode (default)b
- Binary mode
Exceptions
FileNotFoundError
can be raised when reading withr
orr+
FileExistsError
can be raised when writing withx
IsADirectoryError
andPermissionError
can be raised by anyOSError
is the parent class of all listed exceptions
File Object
- Methods do not add or strip trailing newlines, even writelines()
file.seek(0) # Moves to the start of the file
file.seek(offset) # Moves "offset" chars/bytes from the start
file.seek(0, 2) # Moves to the end of the file
bin_file.seek(±offset, anchor) # Anchor: 0 start, 1 current position, 2 end
str/bytes = file.read(size=-1) # Reads 'size' chars/bytes or until EOF
str/bytes = file.readline() # Returns a line or empty string/bytes on EOF
list = file.readlines() # Returns a list of remaining lines
str/bytes = next(file) # Returns a line using buffer, do not mix
file.write(str/bytes) # Writes a string or bytes object
file.writelines(collection) # Writes a collection of strings or bytes objects
file.flush() # Flushes write bufferRead Text from File
def read_file(filename):
with open(filename, encoding='utf-8') as file:
return file.readlines()Write Text to File
def write_to_file(filename, text):
with open(filename, 'w', encoding='utf-8') as file:
file.write(text)
Path
from os import getcwd, path, listdir
from glob import glob
str = getcwd() # Returns the current working directory
str = path.join(path, ...) # Joins two or more pathname components
str = path.abspath(path) # Returns absolute path
str = path.basename(path) # Returns final component of the path
str = path.dirname(path) # Returns path without the final component
tup = path.splitext(path) # Splits on last period of the final component
list = listdir(path='.') # Returns filenames located at path
list = glob('pattern') # Returns paths matching the wildcard pattern
bool = path.exists(path) # Or: Path.exists()
bool = path.isfile(path) # Or: DirEntry/Path.is_file()
bool = path.isdir(path) # Or: DirEntry/Path.is_dir()
DirEntry
- Using
scandir()
instead oflistdir()
can significantly increase the performance of code that also needs file type information
from os import scandir
- Using
iter = scandir(path='.') # Returns DirEntry objects located at path str = DirEntry.path # Returns path as a string str = DirEntry.name # Returns final component as a string file = open(DirEntry) # Opens the file and returns file object
- Path Object
```python
from pathlib import Path
Path = Path(path [, ...]) # Accepts strings, Paths and DirEntry objects
Path = path / path [/ ...] # One of the paths must be a Path object
Path = Path() # Returns relative cwd, also Path('.')
Path = Path.cwd() # Returns absolute cwd, also Path().resolve()
Path = Path.resolve() # Returns absolute Path without symlinks
Path = Path.parent # Returns Path without final component
str = Path.name # Returns final component as a string
str = Path.stem # Returns final component without extension
str = Path.suffix # Returns final component's extension
tup = Path.parts # Returns all components as strings
iter = Path.iterdir() # Returns dir contents as Path objects
iter = Path.glob('pattern') # Returns Paths matching the wildcard pattern
str = str(Path) # Returns path as a string
file = open(Path) # Opens the file and returns file object
OS Commands
Files and Directories
Paths can be either strings, Paths or DirEntry objects
Functions report OS related errors by raising either OSError or one of its subclasses
import os, shutil
os.chdir(path) # Changes the current working directory
os.mkdir(path, mode=0o777) # Creates a directory. Mode is in octal
shutil.copy(from, to) # Copies the file, 'to' can exist or be a dir
shutil.copytree(from, to) # Copies the directory, 'to' must not exist
os.rename(from, to) # Renames/moves the file or directory
os.replace(from, to) # Same, but overwrites 'to' if it exists
os.remove(path) # Deletes the file
os.rmdir(path) # Deletes the empty directory
shutil.rmtree(path) # Deletes the directory
```
Shell Commands
import os
str = os.popen('shell_command').read()
- Sends '1 + 1' to the basic calculator and captures its output:
```python
from subprocess import run
run('bc', input='1 + 1\n', capture_output=True, encoding='utf-8') # CompletedProcess(args='bc', returncode=0, stdout='2\n', stderr='')
Sends test.in to the basic calculator running in standard mode and saves its output to test.out
from shlex import split
os.popen('echo 1 + 1 test.in') run(split('bc -s'), stdin=open('test.in'), stdout=open('test.out', 'w')) # CompletedProcess(args=['bc', '-s'], returncode=0) open('test.out').read() # '2\n'
[back to top](#table-of-contents)
## Data
### JSON
- Text file format for storing collections of strings and numbers
```python
import json
str = json.dumps(object, ensure_ascii=True, indent=None)
object = json.loads(str)
Read Object from JSON File
def read_json_file(filename):
with open(filename, encoding='utf-8') as file:
return json.load(file)Write Object to JSON File
def write_to_json_file(filename, an_object):
with open(filename, 'w', encoding='utf-8') as file:
json.dump(an_object, file, ensure_ascii=False, indent=2)
Pickle
- Binary file format for storing objects
import pickle
bytes = pickle.dumps(object)
object = pickle.loads(bytes)
Read Object from File
def read_pickle_file(filename):
with open(filename, 'rb') as file:
return pickle.load(file)Write Object to File
def write_to_pickle_file(filename, an_object):
with open(filename, 'wb') as file:
pickle.dump(an_object, file)
CSV
- Text file format for storing spreadsheets
import csv
Read
- File must be opened with
newline=""
argument, or newlines embedded inside quoted fields will not be interpreted correctly!
reader = csv.reader(file) # Also: `dialect='excel', delimiter=','`
list = next(reader) # Returns next row as a list of strings
list = list(reader) # Returns list of remaining rows- File must be opened with
Write
- File must be opened with
newline=""
argument, or\r
will be added in front of every\n
on platforms that use\r\n
line endings!
writer = csv.writer(file) # Also: `dialect='excel', delimiter=','`
writer.writerow(collection) # Encodes objects using `str(el)`
writer.writerows(coll_of_coll) # Appends multiple rows- File must be opened with
Parameters
dialect
- Master parameter that sets the default valuesdelimiter
- A one-character string used to separate fieldsquotechar
- Character for quoting fields that contain special charactersdoublequote
- Whether quotechars inside fields get doubled or escapedskipinitialspace
- Whether whitespace after delimiter gets strippedlineterminator
- Specifies how writer terminates rowsquoting
- Controls the amount of quoting: 0 - as necessary, 1 - allescapechar
- Character for escaping 'quotechar' ifdoublequote
is False
Dialets
excel excel-tab unix delimiter , \t , quotechar " " " doublequote True True True skipinitialspace False False False lineterminator \r\n \r\n \n quoting 0 0 1 escapechar None None None Read Rows from CSV File
def read_csv_file(filename):
with open(filename, encoding='utf-8', newline='') as file:
return list(csv.reader(file))Write Rows to CSV File
def write_to_csv_file(filename, rows):
with open(filename, 'w', encoding='utf-8', newline='') as file:
writer = csv.writer(file)
writer.writerows(rows)
SQLite
Server-less database engine that stores each database into a separate file
Connect
- Opens a connection to the database file
- Creates a new file if path doesn't exist
import sqlite3
con = sqlite3.connect('path') # Also ':memory:' con.close()
- Read
- Returned values can be of type str, int, float, bytes or None
```python
cursor = con.execute('query') # Can raise a subclass of sqlite3.Error
tuple = cursor.fetchone() # Returns next row. Also next(cursor)
list = cursor.fetchall() # Returns remaining rows. Also list(cursor)
Write
con.execute('query')
con.commit()
# or
with con:
con.execute('query')Placeholders
- Passed values can be of type str, int, float, bytes, None, bool, datetime.date or datetime.datetme
- Bools will be stored and returned as ints and dates as ISO formatted strings
con.execute('query', list/tuple) # Replaces '?'s in query with values
con.execute('query', dict/namedtuple) # Replaces ':key's with values
con.executemany('query', coll_of_above) # Runs execute() many timesIn this example values are not actually saved because
con.commit()
is omitted!import sqlite3
con = sqlite3.connect('test.db')
con.execute('create table person (person_id integer primary key, name, height)') con.execute('insert into person values (null, ?, ?)', ('Jean-Luc', 187)).lastrowid # 1 con.execute('select * from person').fetchall() #[(1, 'Jean-Luc', 187)]
[back to top](#table-of-contents)
### MySQL
- Has a very similar interface with SQLite, but with differences listed below
- `pip3 install mysql-connector`
```python
from mysql import connector
con = connector.connect(host=str, ...) # `user=str, password=str, database=str
cursor = con.cursor() # Only cursor has execute method
cursor.execute('query') # Can raise a subclass of connector.Error
cursor.execute('query', list/tuple) # Replaces '%s's in query with values
cursor.execute('query', dict/namedtuple) # Replaces '%(key)s's with values
Bytes
- Bytes object is an immutable sequence of single bytes
- Mutable version is called bytearray
bytes = b'str' # Only accepts ASCII characters and \x00 - \xff
int = bytes[index] # Returns int in range from 0 to 255
bytes = bytes[slice] # Returns bytes even if it has only one element
bytes = bytes.join(coll_of_bytes) # Joins elements using bytes object as separator
Encode
bytes = bytes(coll_of_ints) # Ints must be in range from 0 to 255
bytes = bytes(str, 'utf-8') # Or: str.encode('utf-8')
bytes = int.to_bytes(n_bytes, ...) # `byteorder='big/little', signed=False`
bytes = bytes.fromhex('hex') # Hex numbers can be separated by spacesDecode
list = list(bytes) # Returns ints in range from 0 to 255
str = str(bytes, 'utf-8') # Or: bytes.decode('utf-8')
int = int.from_bytes(bytes, ...) # `byteorder='big/little', signed=False`
'hex' = bytes.hex() # Returns a string of hexadecimal numbersRead Bytes from File
def read_bytes(filename):
with open(filename, 'rb') as file:
return file.read()Write Bytes to File
def write_bytes(filename, bytes_obj):
with open(filename, 'wb') as file:
file.write(bytes_obj)
Struct
- Module that performs conversions between a sequence of numbers and a bytes object
- Machine’s native type sizes and byte order are used by default
from struct import pack, unpack, iter_unpack
bytes = pack('format', num_1 [, num_2, ...])
tuple = unpack('format', bytes)
tuples = iter_unpack('format', bytes)
# example
pack('hhl', 1, 2, 3) # b'\x00\x01\x00\x02\x00\x00\x00\x03'
unpack('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03') # (1, 2, 3)
- Format
- For standard type sizes start format string with:
=
- native byte order- `` - little-endian
- `` - big-endian (also '!')
- Integer types. Use a capital letter for unsigned type. Standard sizes are in brackets:
x
- pad byte 'b' - char (1)h
- short (2) 'i' - int (4)l
- long (4)q
- long long (8)
- Floating point types:
f
- float (4)d
- double (8)
- For standard type sizes start format string with:
Array
- List that can only hold numbers of a predefined type
- Available types and their sizes in bytes are listed above
from array import array
array = array('typecode', collection) # Array from collection of numbers
array = array('typecode', bytes) # Array from bytes object
array = array('typecode', array) # Treats array as a sequence of numbers
bytes = bytes(array) # Or: array.tobytes()
Memory View
- A sequence object that points to the memory of another object
- Each element can reference a single or multiple consecutive bytes, depending on format
- Order and number of elements can be changed with slicing.
mview = memoryview(bytes/bytearray/array) # Immutable if bytes, else mutable
real = mview[index] # Returns an int or a float
mview = mview[slice] # Mview with rearranged elements
mview = mview.cast('typecode') # Casts memoryview to the new format
mview.release() # Releases the object's memory buffer
bin_file.write(mview) # Writes mview to the binary file
bytes = bytes(mview) # Creates a new bytes object
bytes = bytes.join(coll_of_mviews) # Joins mviews using bytes object as sep
array = array('typecode', mview) # Treats mview as a sequence of numbers
list = list(mview) # Returns list of ints or floats
str = str(mview, 'utf-8') # Treats mview as a bytes object
int = int.from_bytes(mview, ...) # `byteorder='big/little', signed=False`
'hex' = mview.hex() # Treats mview as a bytes object
Deque
- A thread-safe list with efficient appends and pops from either side. Pronounced "deck"
from collections import deque
deque = deque(collection, maxlen=None)
deque.appendleft(el) # Opposite element is dropped if full
deque.extendleft(collection) # Collection gets reversed
el = deque.popleft() # Raises IndexError if empty
deque.rotate(n=1) # Rotates elements to the right
Advanced
Threading
- CPython interpreter can only run a single thread at a time
- That is why using multiple threads won't result in a faster execution, unless at least one of the threads contains an I/O operation
from threading import Thread, RLock, Semaphore, Event, Barrier
Thread
- Use
kwargs=dict
to pass keyword arguments to the function - Use
daemon=True
, or the program will not be able to exit while the thread is alive
Thread = Thread(target=function) # Use `args=collection` to set arguments
Thread.start() # Starts the thread
bool = Thread.is_alive() # Checks if thread has finished executing
Thread.join() # Waits for thread to finish- Use
Lock
lock = RLock()
lock.acquire() # Waits for lock to be available
lock.release() # Makes the lock available again
# Or
lock = RLock()
with lock:
...Semaphore, Event, Barrier
Semaphore = Semaphore(value=1) # Lock that can be acquired 'value' times
Event = Event() # Method wait() blocks until set() is called
Barrier = Barrier(n_times) # Method wait() blocks until it's called 'n_times'Thread Pool Executor
from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=None) as executor: # Does not exit until done iter = executor.map(lambda x: x + 1, range(3)) # (1, 2, 3) iter = executor.map(lambda x, y: x + y, 'abc', '123') # ('a1', 'b2', 'c3') Future = executor.submit(function [, arg_1, ...]) # Also visible outside block
Future
bool = Future.done() # Checks if thread has finished executing obj = Future.result() # Waits for thread to finish and returns result
- Queue
- A thread-safe FIFO queue
- For LIFO queue use LifoQueue
```python
from queue import Queue
Queue = Queue(maxsize=0)
Queue.put(el) # Blocks until queue stops being full
Queue.put_nowait(el) # Raises queue.Full exception if full
el = Queue.get() # Blocks until queue stops being empty
el = Queue.get_nowait() # Raises queue. Empty exception if empty
Operator
- Module of functions that provide the functionality of operators
from operator import add, sub, mul, truediv, floordiv, mod, pow, neg, abs
from operator import eq, ne, lt, le, gt, ge
from operator import and_, or_, not_
from operator import itemgetter, attrgetter, methodcaller
import operator as op
elementwise_sum = map(op.add, list_a, list_b)
sorted_by_second = sorted(collection, key=op.itemgetter(1))
sorted_by_both = sorted(collection, key=op.itemgetter(1, 0))
product_of_elems = functools.reduce(op.mul, collection)
LogicOp = enum.Enum('LogicOp', {'AND': op.and_, 'OR' : op.or_})
last_el = op.methodcaller('pop')(list)
Introspection
Inspecting code at runtime
Variables
list = dir() # Names of local variables (incl. functions)
dict = vars() # Dict of local variables. Also locals()
dict = globals() # Dict of global variablesAttributes
list = dir(object) # Names of object's attributes (incl. methods)
dict = vars(object) # Dict of object's fields. Also obj.__dict__
bool = hasattr(object, 'attr_name') # Checks if getattr() raises an error
value = getattr(object, 'attr_name') # Raises AttributeError if attribute is missing
setattr(object, 'attr_name', value) # Only works on objects with __dict__ attribute
delattr(object, 'attr_name') # Equivalent to `del object.attr_name`Parameters
from inspect import signature
sig = signature(function) no_of_params = len(sig.parameters) param_names = list(sig.parameters.keys()) param_kinds = [a.kind for a in sig.parameters.values()]
[back to top](#table-of-contents)
### Metaprogramming
- Code that generates code
- Type
- Type is the root class
- If only passed an object it returns its type (class)
- Otherwise it creates a new class
```python
class = type('class_name', parents_tuple, attributes_dict)
Z = type('Z', (), {'a': 'abcde', 'b': 12345})
z = Z()
Meta Class
- A class that creates classes
New()
is a class method that gets called before init()- If it returns an instance of its class, then that instance gets passed to init() as a 'self' argument
- It receives the same arguments as init(), except for the first one that specifies the desired type of the returned instance (MyMetaClass in our case)
new()
can also be called directly, usually from anew()
method of a child class (def __new__(cls): return super().__new__(cls)
)- The only difference between the examples above is that
my_meta_class()
returns a class of typetype
, whileMyMetaClass()
returns a class of typeMyMetaClass
def my_meta_class(name, parents, attrs):
attrs['a'] = 'abcde'
return type(name, parents, attrs)
# or
class MyMetaClass(type):
def __new__(cls, name, parents, attrs):
attrs['a'] = 'abcde'
return type.__new__(cls, name, parents, attrs)Metaclass Attribute
- Right before a class is created it checks if it has the 'metaclass' attribute defined
- If not, it recursively checks if any of his parents has it defined and eventually comes to type()
class MyClass(metaclass=MyMetaClass):
b = 12345
MyClass.a, MyClass.b # ('abcde', 12345)
- Type Diagram
```python
type(MyClass) == MyMetaClass # MyClass is an instance of MyMetaClass
type(MyMetaClass) == type # MyMetaClass is an instance of type
- Inheritance Diagram
MyClass.__base__ == object # MyClass is a subclass of object
MyMetaClass.__base__ == type # MyMetaClass is a subclass of type
Eval
from ast import literal_eval
literal_eval('1 + 2') # 3
literal_eval('[1, 2, 3]') # [1, 2, 3]
literal_eval('abs(1)') # ValueError: malformed node or string
Coroutine
- Coroutines have a lot in common with threads, but unlike threads, they only give up control when they call another coroutine and they don’t use as much memory
- Coroutine definition starts with
async
and its call withawait
asyncio.run(coroutine)
is the main entry point for asynchronous programs- Functions wait(), gather() and as_completed() can be used when multiple coroutines need to be started at the same time
- Asyncio module also provides its own Queue, Event, Lock and Semaphore classes
- Example
- Runs a terminal game where you control an asterisk that must avoid numbers:
import asyncio, collections, curses, enum, random
P = collections.namedtuple('P', 'x y') # Position
D = enum.Enum('D', 'n e s w') # Direction
def main(screen):
curses.curs_set(0) # Makes cursor invisible
screen.nodelay(True) # Makes getch() non-blocking
asyncio.run(main_coroutine(screen)) # Starts running asyncio code
async def main_coroutine(screen):
state = {'*': P(0, 0), **{id_: P(30, 10) for id_ in range(10)}}
moves = asyncio.Queue()
coros = (*(random_controller(id_, moves) for id_ in range(10)),
human_controller(screen, moves),
model(moves, state, *screen.getmaxyx()),
view(state, screen))
await asyncio.wait(coros, return_when=asyncio.FIRST_COMPLETED)
async def random_controller(id_, moves):
while True:
moves.put_nowait((id_, random.choice(list(D))))
await asyncio.sleep(random.random() / 2)
async def human_controller(screen, moves):
while True:
ch = screen.getch()
key_mappings = {259: D.n, 261: D.e, 258: D.s, 260: D.w}
if ch in key_mappings:
moves.put_nowait(('*', key_mappings[ch]))
await asyncio.sleep(0.01)
async def model(moves, state, height, width):
while state['*'] not in {p for id_, p in state.items() if id_ != '*'}:
id_, d = await moves.get()
p = state[id_]
deltas = {D.n: P(0, -1), D.e: P(1, 0), D.s: P(0, 1), D.w: P(-1, 0)}
new_p = P(*[sum(a) for a in zip(p, deltas[d])])
if 0 = new_p.x width-1 and 0 = new_p.y height:
state[id_] = new_p
async def view(state, screen):
while True:
screen.clear()
for id_, p in state.items():
screen.addstr(p.y, p.x, str(id_))
await asyncio.sleep(0.01)
curses.wrapper(main)
Libraries
Progress Bar
pip3 install tqdm
from tqdm import tqdm
from time import sleep
for el in tqdm([1, 2, 3]):
sleep(0.2)
Plot
pip3 install matplotlib
from matplotlib import pyplot
pyplot.plot(y_data [, label=str])
pyplot.plot(x_data, y_data)
pyplot.legend() # Adds a legend
pyplot.savefig('path') # Saves the figure
pyplot.show() # Displays the figure
pyplot.clf() # Clears the figure
Table
- Prints a CSV file as an ASCII table:
pip3 install tabulate
import csv, tabulate
with open('test.csv', encoding='utf-8', newline='') as file:
rows = csv.reader(file)
header = [a.title() for a in next(rows)]
table = tabulate.tabulate(rows, header)
print(table)
Curses
- Clears the terminal, prints a message and waits for the ESC key press:
from curses import wrapper, curs_set, ascii
from curses import KEY_UP, KEY_RIGHT, KEY_DOWN, KEY_LEFT
def main():
wrapper(draw)
def draw(screen):
curs_set(0) # Makes cursor invisible
screen.nodelay(True) # Makes getch() non-blocking
screen.clear()
screen.addstr(0, 0, 'Press ESC to quit.') # Coordinates are y, x
while screen.getch() != ascii.ESC:
pass
def get_border(screen):
from collections import namedtuple
P = namedtuple('P', 'x y')
height, width = screen.getmaxyx()
return P(width-1, height-1)
if __name__ == '__main__':
main()
Logging
pip3 install loguru
- Levels:
debug
,info
,success
,warning
,error
,critical
from loguru import logger
logger.add('debug_{time}.log', colorize=True) # Connects a log file
logger.add('error_{time}.log', level='ERROR') # Another file for errors or higher
logger.level('A logging message.')
Exceptions
- Exception description, stack trace and values of variables are appended automatically
try:
...
except exception:
logger.exception('An error happened.')Rotation
- Argument that sets a condition when a new log file is created
int
- Max file size in bytestimedelta
- Max age of a filetime
- Time of daystr
- Any of above as a string: '100 MB', '1 month', 'monday at 12:00', ...
rotation = int|datetime.timedelta|datetime.time|str
Retention
- Sets a condition which old log files get deleted
int
- Max number of filestimedelta
- Max age of a filestr
- Max age as a string: '1 week, 3 days', '2 months', ...
retention = int|datetime.timedelta|str
Scraping
- Scrapes Python's URL, version number and logo from Wikipedia page:
pip3 install requests beautifulsoup4
import requests, sys
from bs4 import BeautifulSoup
URL = 'https://en.wikipedia.org/wiki/Python_(programming_language)'
try:
html = requests.get(URL).text
doc = BeautifulSoup(html, 'html.parser')
table = doc.find('table', class_='infobox vevent')
rows = table.find_all('tr')
link = rows[11].find('a')['href']
ver = rows[6].find('div').text.split()[0]
url_i = rows[0].find('img')['src']
image = requests.get(f'https:{url_i}').content
with open('test.png', 'wb') as file:
file.write(image)
print(link, ver)
except requests.exceptions.ConnectionError:
print("You've got problems with connection.", file=sys.stderr)
Web
pip3 install bottle
from bottle import run, route, static_file, template, post, request, response
import json
Run
run(host='localhost', port=8080) # Runs locally
run(host='0.0.0.0', port=80) # Runs globallyStatic Request
@route('/img/image')
def send_image(image):
return static_file(image, 'img_dir/', mimetype='image/png')Dynamic Request
@route('/sport')
def send_page(sport):
return template('h1{{title}}/h1', title=sport)REST Request
@post('/odds/sport')
def odds_handler(sport):
team = request.forms.get('team')
home_odds, away_odds = 2.44, 3.29
response.headers['Content-Type'] = 'application/json'
response.headers['Cache-Control'] = 'no-cache'
return json.dumps([team, home_odds, away_odds])Test
pip3 install requests
import requests
url = 'http://localhost:8080/odds/football'
data = {'team': 'arsenal f.c.'}
response = requests.post(url, data=data)
response.json() # ['arsenal f.c.', 2.44, 3.29]
Profile
Stopwatch
from time import time
start_time = time() # Seconds since the Epoch ... duration = time() - start_time
- High performance
```python
from time import perf_counter
start_time = perf_counter() # Seconds since restart
...
duration = perf_counter() - start_time
- Timing a Snippet
from timeit import timeit
timeit('"-".join(str(a) for a in range(100))', ... , number=10000, globals=globals(), setup='pass') # 0.34986
Profiling by Line
pip3 install line_profiler memory_profiler
@profile
def main():
a = [*range(10000)]
b = {*range(10000)}
main()kernprof -lv test.py
python3 -m memory_profiler test.py
Call Graph
- Generates a PNG image of a call graph with highlighted bottlenecks
pip3 install pycallgraph
from pycallgraph import output, PyCallGraph
from datetime import datetime
time_str = datetime.now().strftime('%Y%m%d%H%M%S') filename = f'profile-{time_str}.png' drawer = output.GraphvizOutput(output_file=filename) with PyCallGraph(drawer): code_to_be_profiled
[back to top](#table-of-contents)
### NumPy
- `pip3 install numpy`
- Array manipulation mini-language
- It can run up to one hundred times faster than the equivalent Python code
- Shape is a tuple of dimension sizes
- Axis is the index of a dimension that gets collapsed
- The leftmost dimension has index 0
```python
import numpy as np
array = np.array(list)
array = np.arange(from_inclusive, to_exclusive, ±step_size)
array = np.ones(shape)
array = np.random.randint(from_inclusive, to_exclusive, shape)
array.shape = shape
view = array.reshape(shape)
view = np.broadcast_to(array, shape)
array = array.sum(axis)
indexes = array.argmin(axis)
Indexing
- If row and column indexes differ in shape, they are combined with broadcasting
el = 2d_array[0, 0] # First element
1d_view = 2d_array[0] # First row
1d_view = 2d_array[:, 0] # First column. Also [..., 0]
3d_view = 2d_array[None, :, :] # Expanded by dimension of size 1
1d_array = 2d_array[1d_row_indexes, 1d_column_indexes]
2d_array = 2d_array[2d_row_indexes, 2d_column_indexes]
2d_bools = 2d_array 0
1d_array = 2d_array[2d_bools]Broadcasting
- Broadcasting is a set of rules by which NumPy functions operate on arrays of different sizes and/or dimensions
left = [[0.1], [0.6], [0.8]] # Shape: (3, 1)
right = [ 0.1 , 0.6 , 0.8 ] # Shape: (3)If array shapes differ in length, left-pad the shorter shape with ones
left = [[0.1], [0.6], [0.8]] # Shape: (3, 1)
right = [[0.1 , 0.6 , 0.8]] # Shape: (1, 3) - !If any dimensions differ in size, expand the ones that have size 1 by duplicating their elements
left = [[0.1, 0.1, 0.1], [0.6, 0.6, 0.6], [0.8, 0.8, 0.8]] # Shape: (3, 3) - !
right = [[0.1, 0.6, 0.8], [0.1, 0.6, 0.8], [0.1, 0.6, 0.8]] # Shape: (3, 3) - !If neither non-matching dimension has size 1, raise an error
Example: For each point returns index of its nearest point ([0.1, 0.6, 0.8] = [1, 2, 1])
points = np.array([0.1, 0.6, 0.8]) # [ 0.1, 0.6, 0.8]
wrapped_points = points.reshape(3, 1)
"""
[[ 0.1],
[ 0.6],
[ 0.8]]
"""
distances = wrapped_points - points
"""
[[ 0. , -0.5, -0.7],
[ 0.5, 0. , -0.2],
[ 0.7, 0.2, 0. ]]
"""
distances = np.abs(distances)
"""
[[ 0. , 0.5, 0.7],
[ 0.5, 0. , 0.2],
[ 0.7, 0.2, 0. ]]
"""
i = np.arange(3) # [0, 1, 2]
distances[i, i] = np.inf
"""
[[ inf, 0.5, 0.7],
[ 0.5, inf, 0.2],
[ 0.7, 0.2, inf]]
"""
distances.argmin(1) # [1, 2, 1]
Image
pip3 install pillow
from PIL import Image
Image = Image.new('mode', (width, height))
Image = Image.open('path')
Image = Image.convert('mode')
Image.save('path')
Image.show()
tuple/int = Image.getpixel((x, y)) # Returns a pixel
Image.putpixel((x, y), tuple/int) # Writes a pixel to the image
ImagingCore = Image.getdata() # Returns a sequence of pixels
Image.putdata(list/ImagingCore) # Writes a sequence of pixels
Image.paste(Image, (x, y)) # Writes an image to the image
2d_array = np.array(Image) # Creates NumPy array from greyscale image
3d_array = np.array(Image) # Creates NumPy array from color image
Image = Image.fromarray(array) # Creates image from NumPy array of floats
Modes
1
- 1-bit pixels, black and white, stored with one pixel per byteL
- 8-bit pixels, greyscaleRGB
- 3x8-bit pixels, true colorRGBA
- 4x8-bit pixels, true color with transparency maskHSV
- 3x8-bit pixels, Hue, Saturation, Value color space
Examples
Creates a PNG image of a rainbow gradient
WIDTH, HEIGHT = 100, 100
size = WIDTH * HEIGHT
hues = [255 * i/size for i in range(size)]
img = Image.new('HSV', (WIDTH, HEIGHT))
img.putdata([(int(h), 255, 255) for h in hues])
img.convert('RGB').save('test.png')Adds noise to a PNG image
from random import randint
add_noise = lambda value: max(0, min(255, value + randint(-20, 20)))
img = Image.open('test.png').convert('HSV')
img.putdata([(add_noise(h), s, v) for h, s, v in img.getdata()])
img.convert('RGB').save('test.png')
```
Drawing
- Use
fill=color
to set the primary color - Use
outline=color
to set the secondary color - Color can be specified as a tuple, int,
#rrggbb
string or a color name
from PIL import ImageDraw
- Use
ImageDraw = ImageDraw.Draw(Image) ImageDraw.point((x, y), fill=None) ImageDraw.line((x1, y1, x2, y2 [, ...]), fill=None, width=0, joint=None) ImageDraw.arc((x1, y1, x2, y2), from_deg, to_deg, fill=None, width=0) ImageDraw.rectangle((x1, y1, x2, y2), fill=None, outline=None, width=0) ImageDraw.polygon((x1, y1, x2, y2 [, ...]), fill=None, outline=None) ImageDraw.ellipse((x1, y1, x2, y2), fill=None, outline=None, width=0)
[back to top](#table-of-contents)
### Animation
- `pip3 install pillow imageio`
- Creates a GIF of a bouncing ball
```python
from PIL import Image, ImageDraw
import imageio
WIDTH, R = 126, 10
frames = []
for velocity in range(15):
y = sum(range(velocity+1))
frame = Image.new('L', (WIDTH, WIDTH))
draw = ImageDraw.Draw(frame)
draw.ellipse((WIDTH/2-R, y, WIDTH/2+R, y+R*2), fill='white')
frames.append(frame)
frames += reversed(frames[1:-1])
imageio.mimsave('test.gif', frames, duration=0.03)
Audio
- Bytes object contains a sequence of frames, each consisting of one or more samples
- In a stereo signal, the first sample of a frame belongs to the left channel
- Each sample consists of one or more bytes that, when converted to an integer, indicate the displacement of a speaker membrane at a given moment
- If sample width is one, then the integer should be encoded unsigned
- For all other sizes, the integer should be encoded signed with little-endian byte order
import wave
Wave_read = wave.open('path', 'rb') # Opens the WAV file
framerate = Wave_read.getframerate() # Number of frames per second
nchannels = Wave_read.getnchannels() # Number of samples per frame
sampwidth = Wave_read.getsampwidth() # Sample size in bytes
nframes = Wave_read.getnframes() # Number of frames
params = Wave_read.getparams() # Immutable collection of above
bytes = Wave_read.readframes(nframes) # Returns next 'nframes' frames
Wave_write = wave.open('path', 'wb') # Truncates existing file
Wave_write.setframerate(int) # 44100 for CD, 48000 for video
Wave_write.setnchannels(int) # 1 for mono, 2 for stereo
Wave_write.setsampwidth(int) # 2 for CD quality sound
Wave_write.setparams(params) # Sets all parameters
Wave_write.writeframes(bytes) # Appends frames to the file
Sample Values
sampwidth min zero max 1 0 128 255 2 -32768 0 32767 3 -8388608 0 8388607 4 -2147483648 0 2147483647 Read Float Samples from WAV File
def read_wav_file(filename):
def get_int(a_bytes):
an_int = int.from_bytes(a_bytes, 'little', signed=width!=1)
return an_int - 128 * (width == 1)
with wave.open(filename, 'rb') as file:
width = file.getsampwidth()
frames = file.readframes(-1)
byte_samples = (frames[i: i + width] for i in range(0, len(frames), width))
return [get_int(b) / pow(2, width * 8 - 1) for b in byte_samples]Write Float Samples to WAV File
def write_to_wav_file(filename, float_samples, nchannels=1, sampwidth=2, framerate=44100):
def get_bytes(a_float):
a_float = max(-1, min(1 - 2e-16, a_float))
a_float += sampwidth == 1
a_float *= pow(2, sampwidth * 8 - 1)
return int(a_float).to_bytes(sampwidth, 'little', signed=sampwidth!=1)
with wave.open(filename, 'wb') as file:
file.setnchannels(nchannels)
file.setsampwidth(sampwidth)
file.setframerate(framerate)
file.writeframes(b''.join(get_bytes(f) for f in float_samples))
Examples
Saves a sine wave to a mono WAV file
from math import pi, sin
samples_f = (sin(i * 2 * pi * 440 / 44100) for i in range(100000))
write_to_wav_file('test.wav', samples_f)
```
Adds noise to a mono WAV file
from random import random
add_noise = lambda value: value + (random() - 0.5) * 0.03
samples_f = (add_noise(f) for f in read_wav_file('test.wav'))
write_to_wav_file('test.wav', samples_f)
```
Plays a WAV file
pip3 install simpleaudio
from simpleaudio import play_buffer
with wave.open('test.wav', 'rb') as file:
p = file.getparams()
frames = file.readframes(-1)
play_buffer(frames, p.nchannels, p.sampwidth, p.framerate)
```
Text to Speech
pip3 install pyttsx3
import pyttsx3
engine = pyttsx3.init() engine.say('Sally sells seashells by the seashore.') engine.runAndWait()
[back to top](#table-of-contents)
### Synthesizer
- Plays Popcorn by Gershon Kingsley
- `pip3 install simpleaudio`
```python
import simpleaudio, math, struct
from itertools import chain, repeat
F = 44100
P1 = '71♪,69,,71♪,66,,62♪,66,,59♪,,,'
P2 = '71♪,73,,74♪,73,,74,,71,,73♪,71,,73,,69,,71♪,69,,71,,67,,71♪,,,'
get_pause = lambda seconds: repeat(0, int(seconds * F))
sin_f = lambda i, hz: math.sin(i * 2 * math.pi * hz / F)
get_wave = lambda hz, seconds: (sin_f(i, hz) for i in range(int(seconds * F)))
get_hz = lambda key: 8.176 * 2 ** (int(key) / 12)
parse_note = lambda note: (get_hz(note[:2]), 0.25 if '♪' in note else 0.125)
get_samples = lambda note: get_wave(*parse_note(note)) if note else get_pause(0.125)
samples_f = chain.from_iterable(get_samples(n) for n in f'{P1}{P1}{P2}'.split(','))
samples_b = b''.join(struct.pack('h', int(f * 30000)) for f in samples_f)
simpleaudio.play_buffer(samples_b, 1, 2, F)
Games
Basic Example
pip3 install pygame
import pygame as pg
pg.init()
screen = pg.display.set_mode((500, 500))
rect = pg.Rect(240, 240, 20, 20)
while all(event.type != pg.QUIT for event in pg.event.get()):
deltas = {pg.K_UP: (0, -3), pg.K_RIGHT: (3, 0), pg.K_DOWN: (0, 3), pg.K_LEFT: (-3, 0)}
for delta in (deltas.get(i) for i, on in enumerate(pg.key.get_pressed()) if on):
rect = rect.move(delta) if delta else rect
screen.fill((0, 0, 0))
pg.draw.rect(screen, (255, 255, 255), rect)
pg.display.flip()Rectangle
- Object for storing rectangular coordinates
Rect = pg.Rect(x, y, width, height) # X and y are coordinates of topleft corner
int = Rect.x/y/centerx/centery/... # Top, right, bottom, left
tup = Rect.topleft/center/... # Topright, bottomright, bottomleft
Rect = Rect.move((x, y)) # Use move_ip() to move in place
bool = Rect.collidepoint((x, y)) # Tests if a point is inside a rectangle
bool = Rect.colliderect(Rect) # Tests if two rectangles overlap
int = Rect.collidelist(list_of_Rect) # Returns index of first colliding Rect or -1
list = Rect.collidelistall(list_of_Rect) # Returns indexes of all colliding RectsSurface
- Object for representing images
Surf = pg.display.set_mode((width, height)) # Returns the display surface
Surf = pg.Surface((width, height)) # Creates a new surface.
Surf = pg.image.load('path') # Loads the image
Surf = Surf.subsurface(Rect) # Returns a subsurface
Surf.fill(color) # Fills the whole surface
Surf.set_at((x, y), color) # Updates pixel
Surf.blit(Surface, (x, y)) # Draws passed surface to the surface
Surf = pg.transform.flip(Surf, xbool, ybool)
Surf = pg.transform.rotate(Surf, degrees)
Surf = pg.transform.scale(Surf, (width, height))
pg.draw.line(Surf, color, (x1, y1), (x2, y2), width)
pg.draw.arc(Surf, color, Rect, from_radians, to_radians)
pg.draw.rect(Surf, color, Rect)
pg.draw.polygon(Surf, color, points)
pg.draw.ellipse(Surf, color, Rect)Font
Font = pg.font.SysFont('name', size, bold=False, italic=False)
Font = pg.font.Font('path', size)
Surf = Font.render(text, antialias, color [, background])Sound
Sound = pg.mixer.Sound('path') # Loads the WAV file
Sound.play() # Starts playing the sound
Basic Mario Brothers Example
import collections, dataclasses, enum, io, pygame, urllib.request, itertools as it
from random import randint
P = collections.namedtuple('P', 'x y') # Position D = enum.Enum('D', 'n e s w') # Direction SIZE, MAX_SPEED = 50, P(5, 10) # Screen size, Speed limit
def main(): def get_screen(): pygame.init() return pygame.display.set_mode(2 [SIZE16])
def get_images():
url = 'https://gto76.github.io/python-cheatsheet/web/mario_bros.png'
img = pygame.image.load(io.BytesIO(urllib.request.urlopen(url).read()))
return [img.subsurface(get_rect(x, 0)) for x in range(img.get_width() // 16)]
def get_mario():
Mario = dataclasses.make_dataclass('Mario', 'rect spd facing_left frame_cycle'.split())
return Mario(get_rect(1, 1), P(0, 0), False, it.cycle(range(3)))
def get_tiles():
positions = [p for p in it.product(range(SIZE), repeat=2) if {*p} & {0, SIZE-1}] + \
[(randint(1, SIZE-2), randint(2, SIZE-2)) for _ in range(SIZE**2 // 10)]
return [get_rect(*p) for p in positions]
def get_rect(x, y):
return pygame.Rect(x*16, y*16, 16, 16)
run(get_screen(), get_images(), get_mario(), get_tiles())
def run(screen, images, mario, tiles): clock = pygame.time.Clock() while all(event.type != pygame.QUIT for event in pygame.event.get()): keys = {pygame.K_UP: D.n, pygame.K_RIGHT: D.e, pygame.K_DOWN: D.s, pygame.K_LEFT: D.w} pressed = {keys.get(i) for i, on in enumerate(pygame.key.get_pressed()) if on} update_speed(mario, tiles, pressed) update_position(mario, tiles) draw(screen, images, mario, tiles, pressed) clock.tick(28)
def update_speed(mario, tiles, pressed): x, y = mario.spd x += 2 ((D.e in pressed) - (D.w in pressed)) x -= x // abs(x) if x else 0 y += 1 if D.s not in get_boundaries(mario.rect, tiles) else (-10 if D.n in pressed else 0) mario.spd = P([max(-limit, min(limit, s)) for limit, s in zip(MAX_SPEED, P(x, y))])
def updateposition(mario, tiles): new_p = mario.rect.topleft larger_speed = max(abs(s) for s in mario.spd) for in range(larger_speed): mario.spd = stop_on_collision(mario.spd, get_boundaries(mario.rect, tiles)) new_p = P(*[a + s/larger_speed for a, s in zip(new_p, mario.spd)]) mario.rect.topleft = new_p
def get_boundaries(rect, tiles): deltas = {D.n: P(0, -1), D.e: P(1, 0), D.s: P(0, 1), D.w: P(-1, 0)} return {d for d, delta in deltas.items() if rect.move(delta).collidelist(tiles) != -1}
def stop_on_collision(spd, bounds): return P(x=0 if (D.w in bounds and spd.x 0) or (D.e in bounds and spd.x 0) else spd.x, y=0 if (D.n in bounds and spd.y 0) or (D.s in bounds and spd.y 0) else spd.y)
def draw(screen, images, mario, tiles, pressed): def get_frame_index(): if D.s not in get_boundaries(mario.rect, tiles): return 4 return next(mario.frame_cycle) if {D.w, D.e} & pressed else 6
screen.fill((85, 168, 255))
mario.facing_left = (D.w in pressed) if {D.w, D.e} & pressed else mario.facing_left
screen.blit(images[get_frame_index() + mario.facing_left * 9], mario.rect)
for rect in tiles:
screen.blit(images[18 if {*rect.topleft} & {0, (SIZE-1)*16} else 19], rect)
pygame.display.flip()
if name == 'main': main()
[back to top](#table-of-contents)
### Pandas
- `pip3 install pandas`
```python
import pandas as pd
from pandas import Series, DataFrame
Series
- Ordered dictionary with a name
Series([1, 2], index=['x', 'y'], name='a')
"""
x 1
y 2
Name: a, dtype: int64
"""
Sr = Series(list) # Assigns RangeIndex starting at 0
Sr = Series(dict) # Takes dictionary's keys for index
Sr = Series(dict/Series, index=list) # Only keeps items with keys specified in index
el = Sr.loc[key] # Or: Sr.iloc[index]
Sr = Sr.loc[keys] # Or: Sr.iloc[indexes]
Sr = Sr.loc[from_key : to_key_inclusive] # Or: Sr.iloc[from_i : to_i_exclusive]
el = Sr[key/index] # Or: Sr.key
Sr = Sr[keys/indexes] # Or: Sr[key_range/range]
Sr = Sr[bools] # Or: Sr.i/loc[bools]
Sr = Sr == el/Sr # Returns a Series of bools
Sr = Sr +-*/ el/Sr # Non-matching keys get value NaN
Sr = Sr.append(Sr) # Or: pd.concat(coll_of_Sr)
Sr = Sr.combine_first(Sr) # Adds items that are not yet present
Sr.update(Sr) # Updates items that are already presentAggregate, Transform, Map
- The way
aggregate()
andtransform()
find out whether a function accepts an element or the whole Series is by passing it a single value at first and if it raises an error, then they pass it the whole Series - Last result has a hierarchical index. Use
Sr[key_1, key_2]
to get its values
el = Sr.sum/max/mean/idxmax/all() # Or: Sr.aggregate(agg_func)
Sr = Sr.rank/diff/cumsum/ffill/interpl() # Or: Sr.agg/transform(trans_func)
Sr = Sr.fillna(el) # Or: Sr.apply/agg/transform/map(map_func)- The way
sr = Series([1, 2], index=['x', 'y'])
"""
x 1
y 2
"""
```
| | 'sum' | ['sum'] | {'s': 'sum'} |
| ------------- | ----- | ------- | ------------ |
| sr.apply(...) | 3 | sum 3 | s 3 |
| sr.agg(...) | | | |
| | 'rank' | ['rank'] | {'r': 'rank'} |
| ------------- | ------ | -------- | ------------- |
| sr.apply(...) | | rank | |
| sr.agg(...) | x 1 | x1 | rx1 |
| sr.trans(...) | y 2 | y 2 | y 2 |
DataFrame
- Table with labeled rows and columns
DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
"""
x y
a 1 2
b 3 4
"""
DF = DataFrame(list_of_rows) # Rows can be either lists, dicts or series
DF = DataFrame(dict_of_columns) # Columns can be either lists, dicts or series
el = DF.loc[row_key, column_key] # Or: DF.iloc[row_index, column_index]
Sr/DF = DF.loc[row_key/s] # Or: DF.iloc[row_index/es]
Sr/DF = DF.loc[:, column_key/s] # Or: DF.iloc[:, column_index/es]
DF = DF.loc[row_bools, column_bools] # Or: DF.iloc[row_bools, column_bools]
Sr/DF = DF[column_key/s] # Or: DF.column_key
DF = DF[row_bools] # Keeps rows as specified by bools
DF = DF[DF_of_bools] # Assigns NaN to False values
DF = DF == el/Sr/DF # Returns DataFrame of bools
DF = DF +-*/ el/Sr/DF # Non-matching keys get value NaN
DF = DF.set_index(column_key) # Replaces row keys with values from a column
DF = DF.reset_index() # Moves row keys to their own column
DF = DF.filter('regex', axis=1) # Only keeps columns whose key matches the regex
DF = DF.melt(id_vars=column_key/s) # Converts DF from wide to long formatMerge, Join, Concat
l.merge(r, on="y", how=...)
outer
x y z
0 1 2 .
1 3 4 5
2 . 6 7inner
x y z
3 4 5left
x y z
1 2 .
3 4 5Joins / Merges on column
also accepts left_on and right_on parameters
uses
inner
by default
l.join(r, lsuffix="l", rsuffix="r", how=...)
outer
x yl yr z
a 1 2 . .
b 3 4 4 5
c . . 6 7inner
x yl yr z
3 4 4 5left
x yl yr z
1 2 . .
3 4 4 5Joins / Merges on row keys
uses
left
by default
pd.concat([l, r], axis=0, join=...)
outer
x y z
a 1 2 .
b 3 4 .
b . 4 5
c . 6 7inner
y
2
4
4
6Adds rows at the bottom
uses
outer
by defaultby default works the same as
l.append(r)
pd.concat([l, r], axis=1, join=...)
outer
x y y z
a 1 2 . .
b 3 4 4 5
c . . 6 7inner
x y y z
3 4 4 5Adds columns at the right end
uses
outer
by default
l.combine_first(r)
outer
x y z
a 1 2 .
b 3 4 5
c . 6 7Adds missing rows and columns
l = DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
"""
x y
a 1 2
b 3 4
"""
r = DataFrame([[4, 5], [6, 7]], index=['b', 'c'], columns=['y', 'z'])
"""
y z
b 4 5
c 6 7
"""Aggregate, Transform, Map
- All operations operate on columns by default
- Use
axis=1
parameter to process the rows instead - Use
DF[col_key_1, col_key_2][row_key]
to get the fifth result's values.
Sr = DF.sum/max/mean/idxmax/all() # Or: DF.apply/agg/transform(agg_func)
DF = DF.rank/diff/cumsum/ffill/interpl() # Or: DF.apply/agg/transform(trans_func)
DF = DF.fillna(el) # Or: DF.applymap(map_func)
# example
df = DataFrame([[1, 2], [3, 4]], index=['a', 'b'], columns=['x', 'y'])
x y
a 1 2
b 3 4Encode, Decode
DF = pd.read_json/html('str/path/url')
DF = pd.read_csv/pickle/excel('path/url')
DF = pd.read_sql('query', connection)
DF = pd.read_clipboard()
dict = DF.to_dict(['d/l/s/sp/r/i'])
str = DF.to_json/html/csv/markdown/latex([path])
DF.to_pickle/excel(path)
DF.to_sql('table_name', connection)
GroupBy
Object that groups together rows of a dataframe based on the value of the passed column
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 6]], index=list('abc'), columns=list('xyz'))
df.groupby('z').get_group(3)
"""
x y
a 1 2
"""
df.groupby('z').get_group(6)
"""
x y
b 4 5
c 7 8
"""
GB = DF.groupby(column_key/s) # DF is split into groups based on passed column
DF = GB.get_group(group_key) # Selects a group by value of grouping columnAggregate, Transform, Map
DF = GB.sum/max/mean/idxmax/all() # Or: GB.apply/agg(agg_func)
DF = GB.rank/diff/cumsum/ffill() # Or: GB.aggregate(trans_func)
DF = GB.fillna(el) # Or: GB.transform(map_func)
gb = df.groupby('z')
x y z
3: a 1 2 3
6: b 4 5 6
c 7 8 6
Rolling
Object for rolling window calculations
R_Sr/R_DF/R_GB = Sr/DF/GB.rolling(window_size) # Also: `min_periods=None, center=False`.
R_Sr/R_DF = R_DF/R_GB[column_key/s] # Or: R.column_key
Sr/DF/DF = R_Sr/R_DF/R_GB.sum/max/mean() # Or: R.apply/agg(agg_func/str)
Plotly
pip3 install pandas plotly
Covid Deaths by Continent example
import pandas as pd
import plotly.express
covid = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv', usecols=['iso_code', 'date', 'total_deaths', 'population']) continents = pd.read_csv('https://datahub.io/JohnSnowLabs/country-and-continent-codes-' + \ 'list/r/country-and-continent-codes-list-csv.csv', usecols=['Three_Letter_Country_Code', 'Continent_Name']) df = pd.merge(covid, continents, left_on='iso_code', right_on='Three_Letter_Country_Code') df = df.groupby(['Continent_Name', 'date']).sum().reset_index() df['Total Deaths per Million'] = df.total_deaths * 1e6 / df.population df = df[('2020-03-14' df.date) & (df.date '2020-06-25')] df = df.rename({'date': 'Date', 'Continent_Name': 'Continent'}, axis='columns') plotly.express.line(df, x='Date', y='Total Deaths per Million', color='Continent').show()
- Confirmed Covid Cases, Dow Jones, Gold, and Bitcoin Price
```python
import pandas, datetime
import plotly.graph_objects as go
def main():
display_data(wrangle_data(*scrape_data()))
def scrape_data():
def scrape_yahoo(id_):
BASE_URL = 'https://query1.finance.yahoo.com/v7/finance/download/'
now = int(datetime.datetime.now().timestamp())
url = f'{BASE_URL}{id_}?period1=1579651200&period2={now}&interval=1d&events=history'
return pandas.read_csv(url, usecols=['Date', 'Close']).set_index('Date').Close
covid = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv',
usecols=['date', 'total_cases'])
covid = covid.groupby('date').sum()
dow, gold, bitcoin = [scrape_yahoo(id_) for id_ in ('^DJI', 'GC=F', 'BTC-USD')]
dow.name, gold.name, bitcoin.name = 'Dow Jones', 'Gold', 'Bitcoin'
return covid, dow, gold, bitcoin
def wrangle_data(covid, dow, gold, bitcoin):
df = pandas.concat([covid, dow, gold, bitcoin], axis=1)
df = df.loc['2020-02-23':].iloc[:-2]
df = df.interpolate()
df.iloc[:, 1:] = df.rolling(10, min_periods=1, center=True).mean().iloc[:, 1:]
df.iloc[:, 1:] = df.iloc[:, 1:] / df.iloc[0, 1:] * 100
return df
def display_data(df):
def get_trace(col_name):
return go.Scatter(x=df.index, y=df[col_name], name=col_name, yaxis='y2')
traces = [get_trace(col_name) for col_name in df.columns[1:]]
traces.append(go.Scatter(x=df.index, y=df.total_cases, name='Total Cases', yaxis='y1'))
figure = go.Figure()
figure.add_traces(traces)
figure.update_layout(
yaxis1=dict(title='Total Cases', rangemode='tozero'),
yaxis2=dict(title='%', rangemode='tozero', overlaying='y', side='right'),
legend=dict(x=1.1)
).show()
if __name__ == '__main__':
main()
Cython
- Library that compiles Python code into C
pip3 install cython
import pyximport; pyximport.install()
import cython_script
cython_script.main()
Definitions
- All
cdef
definitions are optional, but they contribute to the speed-up - Script needs to be saved with a
pyx
extension
cdef type var_name = el
cdef type[n_elements] var_name = [el_1, el_2, ...]
cdef type/void func_name(type arg_name_1, ...):
cdef class class_name:
cdef public type attr_name
def __init__(self, type arg_name):
self.attr_name = arg_name- All
cdef enum enum_name: member_name_1, member_name_2, ...
[back to top](#table-of-contents)